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SUPERSONIC FLOW AROUND ELLIPSOIDS

Experimental investigations of supersonic flow around
ellipsoidal models and the position of the detached
shock waves are described.

Tests were conducted in an intermittent wind tunnel at Mach numbers
M=1.48, 2.01, 2.53, 3.02. The Reynolds numbers, referred to 0.1 m length
6

and calculated from the free stream parameters, ranged from 2.O°lO6 to 2.5°107,
The test models were oblate ellipsoids of revolution with semi-axis ratios

t = b/a = 0.49, 0.34, and 0.19. Each model had 11 pressure orifices situated
symmetrically about the axis. The pressure distribution on the surface of the
ellipsoid with semi-axis ratio t = 0.34 is shown in figure 1 for M = 3.02 (the
cross section ¥ = O - 180°). The experimental points for angles of attack

o =0, 5, 10, and 15° are joined by solid curves., The dashed curves in figure 1
give the values of cp/cpO for o« = 0, 5, 10°, calculated according to the

refined Newtonian equation

= ‘o0 (cosa V' 1 —r? — rtsin acos )
p'fsip’ao 1-r8(2—1) (l)

where cpO is the value given by the theory of supersonic flow of an ideal gas
for the pressure coefficient at the leading apex of the body, a4 is the angle

between the tangent to the body contour at this point and the free stream
centerline, r = R/a is the dimensionless radius. It is necessarily pointed out
that equation (1) does not enable one to find the pressure on portions of the
body in its "aerodynamic shadow." According to Newtonian theory, the pressure
on these areas of the surface 1is equal to zero.
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*Numbers in the margin indicate pagination in the original foreign text.
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The tangential and normal force coefficients of the ellipsoids are equal to

i
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Here P> M are the pressure and free stream Mach number, y is the adia-
batic exponent, P, is the absolute pressure on the surface of the body, B is the
angle between the normal to the surface and the axis of the body.

In calculating the aerodynamic performance curves of the ellipsoids in /30
supersonic flow at various angles of attack, the assumption was made that

P(r¥)=p,(r)+ p_(r)cosy (2)

P, (r)=2lp(r0) + p (rat)]

p-(r)="/:1p(r0) — p(rn)]
. _ PPy
P==x

Here

The quantity pO denotes the total pressure dlrectly behlnd the dlscontlnulty.
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Figure 2

The pressure on the ellipsoid (t = 0.34) is shown in figure 2 as a function
of the angle ¥ for M = 3.02 and streaming at oblique angles of attack. The
experimental values of p for fixed values of the dimensionless radius are com-
pared with the values calculated from equation (2). The curves calculated
according to equation (2) are represented in figure 2 by solid curves for
o = 5°, by dashed curves for ¢ = 10°, and by dot-dash curves for ¢ = 15°, It is
apparent from inspection of the graph that the experimental distribution of
pressure with respect to the angle ¥ is satisfactorily approximated by a cosine
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curve. This makes it possible to carry out an approximate calculation of the
aerodynamic performance curves for the ellipsoids on the basis of data on the
pressure distribution over the contour of one section of the model in the plane
of the angle of attack, thus, reducing the computational effort. The tangen-
tial force coefficient, teking the assumption (2) into account, acquires the
form
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Figure 3

The graph of figure 3 shows the variation of the tangential force coeffi-
cient for the ellipsoid with semi-axis ratio t = 0.34. Fach curve was con-
structed for a definite M number. It is evident from the results of the experi-
ment that in the investigated range of attack angles, &« = 0 + 15°, the
tangential force ccefficient remains essentially constant (ih%). The dashed
line in figure 3 1s calculated from equation (1). The anslytic curve is about
20% higher than the experimental results for M = 3.02.

The tested ellipsoids occupy an intermediate status between a sphere
(t = 1) and a cylinder with a flat leading part (t =90). It is apparent from
figure 4 that flattening of the ellipsoid from t = 0.49 to 0.19 increases the
wave drag by 15 to 18%; as the M number is increased from 1.48 to 3.02 the tan-
gential force coefficient for all models tested increases by 20 to 22%; the
dashed line gives the values of c; according to the refined Newtonian equation.

Results of experimental investigations on supersonic flow past plates and
bodies of revolution with elliptical frontal portions are described by Holder
and Chinneck (ref. 1). The authors obtained data on the pressure distribution,
drag, and flow spectra of the models with M numbers ranging from 1.42 to 1.82.
The crosses in figure 4 indicate these results for the case of a body of revo—éiE
lution with a flat leading portion, an ellipsoid with semi-axis ratio t = 0.5,
and a sphere, with M = 1.h2,

The normal force coefficient is determined from the equation

- ” 1 h
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Figure 4

The dependence of the normal force coefficient on the angle of attack is
shown in figure 5 for an ellipsoidal model with t = 0.34. The solid line joins
the experimental points, the dashed line gives the value of cy calculated from

equation (1). 1In the investigated range of attack angles, o = O to 15°, the
normal force coefficient of the ellipsoids increases linearly with angle of
attack,
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The effect of flattening of the ellipsoid on the value of dcn/da(a_o) is

shown in figure 6. The experimental data for M = 3.02 (curve 1) are compared
with the values calculated from the refined Newtonian formula (curve 2).

The shape of the bow wave and stand-off distance were analyzed from photo-
graphs of the flow past the ellipsoids at zero angle of attack. Data on the
shape and position of the bow wave for the ellipsoid with semi-axis ratio
t = 0.49 are illustrated in figure 7. The graphs were constructed in the
dimensionless coordinates of points on the wave. The numerals 1, 2, 3, 4 refer
to the shapes of the head wave and positions of the ellipsoid nose for Mach
numbers M = 3.02, 2.53, 2.01, and 1.48, respectively (solid curves). For com-
parison with the results of the tests at M = 1.48, data from reference 1 for a
similar ellipsoid with t = 0.5 and M = 1.42 are also given in figure 7 (dashed
curves).

The complex flow behind the shock wave was calculated on electronic com-
puters by numerical methods. Using A. A. Dorodnitsyn's method of integral
relations (ref.2), O. M. Belotserkovskiy (ref.3) computed the flow field about
the nose sections of ellipsoids of revolution. The dot-dash curve in figure 7
reveals the shape of the head wave for an ellipsoid with semi-axis ratio
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Figure 7

t = 0.666 at M = 4.0 (ref. 3). In this same figure, the dot-dot-dash curve repjég_
resents the results of Osborne and Crane's experiments (ref. 4) for an ellipsoid
with t = 0,707. The flow around models of three axially symmetrical bodies
(hemisphere, hyperboloid, and ellipsoid) at M = 6.8 was studied in reference 4.

Theoretical and experimental data on the detachment of a compression shock
from a body as a function of the free stream Mach number are shown in figure 8.
The M number is plotted on the horizontal axis, the ration &/a on the vertical
(where & is the distance between the shock and the body along the_z_axis). On
the basis of data from the tests described herein, for M = 1.48, 2.01, 2.53,
and 3.02 (open circles) the curves of 6/a = £(M) were constructed for ellipsolds
with semi-axis ratios 1 = 0.19, 0.34, and 0.49.
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Vinokur (ref. 5) gives two approximate analytical solutions for a family of
oblate ellipsoids with constant density. It is assumed, in the first solution,
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that the surface of pressure discontinuity is confocal with the surface of the

body. In the second solution, the assumption is that the curvature of the dis-
continuity is constant near the axis. The theoretical data of Vinokur for the

parameter &/a are represented in figure 8 by a dashed curve for the first solu-
tion and by a dot-dash curve for the second. The second solution comes nearer

the experimental data than the first, although, both gives values for 5/a that

are too low relative to the experimental values.

In reference 1, the shock stand-off distance was measured for a cylinder
with a flat frontal portion, an ellipsoid, and a sphere for M = 1.42, 1.6, 1.82
(heavy dots in figure 8). As is apparent from the graph, the data of refer-
ence 1 for an ellipsoid with t = 0.5 agrees satisfactorily with the results of
our own measurements. As the parameter t is varied from 0.19 to 0.49, the
stand-off distance of the shock wave from the ellipsoid (6/a) decreases from
1.05 to 0.86 for M = 1.48, and from 0.48 to 0.33 for M = 3.02. Figure 8, also,
shows Servin's (ref. 6-7) theoretical (dotted curve) and experimental (squares)
values of the parameter 6/a for the case of a flat-ended cylinder, as well as,
the results of experiments (ref. 8) on a sphere (circled crosses).
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